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1. Introduction

String theory in time-dependent backgrounds is one of the most important questions that

need to be understood. Dealing with general time-dependent backgrounds is still out of

our abilities. Therefore simple solvable models, capturing some important aspects of the

realistic physics, are laboratories for theoretical ideas and tools, which may give us some

valuable lessons in more general and more difficult cases.

Among these the open string tachyon condensation, initiated by Sen [1 – 3], is a class of

important models which are intensely studied in the past few years. For a comprehensive

review in this subject with a complete list of references, see [4]. These works give us many

surprises and insights into the tachyon physics. When coupling to the closed strings, a

time-dependent open string field configuration, such as the rolling tachyon solution, on

an unstable D-brane acts as a time-dependent source of various closed string fields, and

produces closed string radiation [5 – 9]. By studying various emission processes, people

realize that that there is a new kind of open/closed string duality [10]. Recently the authors

of [11] carefully study the subtle points in the modular transformation which is related with

unitarity and channel duality. The study of open string tachyon also leads to the “reloading

of the matrix” [12, 13], which gives a deep holographic understanding of the c = 1 matrix

model, identifying it as the world-line theory of the ZZ brane low energy dynamics. This

holographic viewpoint has also been extended to the supersymmetric cases [14 – 16].

In the calculation of the closed string radiation rate, people find a Hagedorn divergence

both in 26d [8] and 2d [13] string theory. In [9] the authors consider the background with

a linear dilaton, and they find that with this deformation the ultraviolet divergence in the
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closed string emission rate is absent. The linear dilaton CFT is simple enough, nontrivial

yet, to be treated exactly. There are many interesting related works. In [17] the author

discusses the D-brane decay in the linear dilaton background from the viewpoint of the

effective dynamics, see also [18] with electromagnetic field turned on. In [19] the author

makes a deformation of 2d string theory with the X0 direction replaced by a timelike

linear dilaton, and discuss its matrix model description. The linear dilaton is also related

to many other important CFTs, e.g. the near throat region of the NS5 brane, the 2d black

hole SL(2, R)/U(1) etc. The brane decay in these backgrounds has been studied by [20 – 23]

and other authors. Recently [24] studies a background which is Minkowskian in the string

frame with a null linear dilaton, and proposes a dual matrix string model to describe the

dynamics near the big-bang singularity. A pure linear dilaton has a bare strong coupling

region. A convenient way to regularize this in the string perturbation theory is to embed it

into the Liouville field theory, where the strong coupling region is effectively screened by the

exponential tachyon potential. In the past few years we have gained much knowledge about

the Liouville theory, especially about the D-branes in this theory. There are two types of

D-branes. One is extended in the Liouville direction [25, 26], the other is localized [27] in

the strong coupling region.

In this paper we study the decay process of a ZZ-type p-brane in the background

Rt × RL × R
D−2 , (1.1)

where the gradient of the dialton has components along Rt and RL. The difference of our

background with that of [9] is that we turn on a exponential bulk tachyon potential along

RL, making it become a Liouville direction. In presence of the linear dilaton it is illegal to

impose the usual Dirichlet boundary condition, since it breaks the world-sheet conformal

invariance. However having the exponential potential we can utilize the knowledge from

Liouville theory to study the ZZ-type brane, which is localized in the strong coupling region

of RL direction and has usual Dirichlet or Neumann boundary conditions in other spacial

directions. The time direction CFT describing the brane decay is the so-called Timelike

Boundary Liouville (TBL) theory, which is initially studied in [28, 29]. By tuning the

gradient of the dilaton the dimension D of the spacetime varies from 2 to 26. The critical

case D = 26 corresponds to the null dilaton. In this situation not only the open string

configuration on the D-brane is time-dependent, the background in the bulk is also variant

along with time.

This paper is organized as follows. In section 2 we introduce the background and review

the construction of the boundary states in this background. In section 3 we calculate the

closed string field produced by the brane decay. The result is, as expected, that the

contribution of the linear dilaton changes the on-shell condition of the closed string field.

In section 4 we calculate the imaginary part of the annulus amplitude, which is identified,

using the optical theorem, as the emission rate of closed strings. We find that when

2 < D < 26 (spacelike dilaton) there is a Hagedorn behavior in the closed string UV,

which is as same as the brane decay in the usual 26d and 2d string theory [8, 13], while

different from [9], although there is also a linear dilaton. Our result, as in [8], means that

all of the brane energy converts into closed strings. In the closed string IR, however, the
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emission rate is finite. These two aspects are the main results of this paper. We also give

some comments about the case D = 26 which corresponds that the dilaton is null. In

section 5 we make some concluding remarks. In appendix we give some calculation details.

2. Background and boundary states

In this paper we will study the decay process of a ZZ-type D-brane in the framework of

the boundary CFT. The total world-sheet action is S = Sbulk + Sbndy. The bulk is a

tensor product of a time-like linear dilaton X0, a Liouville direction X1 and the residual

free bosons Xi with i = 2, · · · ,D. The boundary action is the so-called “half s-brane”

deformation of the X0 bulk CFT. To be explicit we list the total action

S = ( SX0 + SX1 + SXi) + Sbndy ,

SX0 = − 1

4π

∫

d2σ
√

g ( gab∂aX
0∂bX

0 + RV0X
0) ,

SX1 =
1

4π

∫

d2σ
√

g ( gab∂aX
1∂bX

1 + RV1X
1 + 4πµe2bX1

) ,

SXi =
1

4π

∫

d2σ
√

g gab∂aX
i∂bX

i ,

Sbndy =
1

2π

∫

ds g1/4 (KV0X
0 + 2πλ eβX0

) . (2.1)

Here gab is the world-sheet metric, R is the 2d curvature scalar, and K is the extrinsic

curvature of the world-sheet boundary. From the action we see that the dilaton Φ =

V0X
0 + V1X

1. The X0 part is the Timelike Boundary Liouville (TBL) with vanishing 2d

cosmological constant, introduced in [28]. For the theory to be perturbatively well-defined

we also turn on the bulk tachyon T ∼ e2bX1
to make the X1 direction to be a standard

Liouville CFT. Conformal invariance requires that

V0 = β − 1

β
, V1 = b +

1

b
. (2.2)

The central charge is

cX0
= 1 − 6V 2

0 , cX1
= 1 + 6V 2

1 . (2.3)

The dimension D of spacetime is

D = 26 − 6(−V 2
0 + V 2

1 ) . (2.4)

The primary fields of the X0 and X1 CFTs are eik0X0+V0X0
and eik1X1+V1X1

, with the

conformal weights −1
4(k2

0 + V 2
0 ) and 1

4 (k2
1 + V 2

1 ) respectively.

To study the brane decay a central object is the boundary state of the unstable brane.

Since the total CFT is a tensor product of several parts, we can construct the boundary

state for each part separately, and then multiply them together. We first deal with the X0
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direction. The X0 CFT is the so-called Timelike Boundary Liouville (TBL) theory. The

one point function and the corresponding boundary state have been worked out in [28].

The TBL can be related to the spacelike boundary Lioville (SBL), defined by

1

4π

∫

d2σ
√

g ( gab∂aφ∂bφ + RQφ + 4πµe2bφ) +
1

2π

∫

ds g1/4 (KQφ + 2πλ ebφ) (2.5)

with Q = b + 1
b , by the analytical continuation1

X0 → iφ , β → −ib , V0 → −iQ . (2.6)

Then the FZZT one point function2 obtained in [25, 26] gives us its timelike counterpart

UX0(k0) = 〈 eik0X0(0)+V0X0(0)〉TBL = i〈 e−k0φ(0)+Qφ(0)〉SBL

= − i

21/42πb

[

2πλ

Γ(1 − b2)

]

k0
b

Γ(−k0/b) Γ(1 − bk0)

= − 1

21/42πβ

[

2πλ

Γ(1 + β2)

]−
ik0
β

Γ(ik0/β) Γ(1 − iβk0) . (2.7)

In the second line we have taken the limit (see [28])

µ → 0 , s → ∞ , µ cosh2 πbs = λ2 sinπb2 fixed (2.8)

to turn off the bulk cosmological constant term in the X0 direction. Having the one point

function we can construct the corresponding boundary state as

|B〉X0 =

∫

dk0

2π
UX0(k0) |k0〉〉 , (2.9)

where |k0〉〉 is the Ishibashi state corresponding to the primary state |k0〉 = eik0X0+V0X0 |0〉.
Now we turn to the X1 part, which is the standard Liouville theory. In this theory

there is an important boundary state [27], called ZZ brane, corresponding to the degenerate

representation of the Virasoro algebra. The ZZ brane boundary state is

|B〉X1 =

∫

dk1

2π
UX1(k1) |k1〉〉 , (2.10)

The unnormalized one point function is

UX1(k1) = 〈 eik1X1(0)+V1X1(0)〉ZZ = − 23/4πb µ̃−ik1/2b

Γ(−ik1/b) Γ(1 − ibk1)
,

µ̃ = πµγ(b2) , γ(b2) = Γ(b2)/Γ(1 − b2) , (2.11)

1Although the continuation from TBL to SBL has some subtleties [29 – 31], especially in the multi-point

function, the naive manipulation in the one point function gives the correct result.
2Here we use the unnormalized one point function, which is just the inner product of the boundary state

with the Ishibashi state.
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where |k1〉〉 is the Ishibashi state corresponding to the primary state |k1〉 = eik1X1+V1X1 |0〉.
The remaining parts of the boundary state corresponding to the Xi and the Fadeev-

Popov ghost are standard

|B〉Xi =

∫

dD−p−2k⊥
(2π)D−p−2

exp

[

−
∞
∑

n=1

1

n
Sij αi

−nα̃j
−n

]

|k⊥, k‖ = 0〉 , (2.12)

|B〉gh =
1

2
exp

[

∞
∑

n=1

(c−nb̃−n − b−nc̃−n)

]

(c0 + c̃0) | ↓〉 . (2.13)

The momentum integration in the Xi part boundary state is only over the transverse

direction k⊥. The ghost vacuum | ↓〉 is defined by cm| ↓〉 = bn| ↓〉 = 0 for m > 0, n ≥ 0.

The total boundary state |Bp〉 for the open string tachyon condensation on a ZZ-type

Dp-brane is the tensor product of the X0, X1, Xi and the ghost part

|Bp〉 = |B〉X0 ⊗ |B〉X1 ⊗ |B〉Xi ⊗ |B〉gh . (2.14)

3. Closed string field configuration

After reviewing the construction of the boundary state in the previous subsection, we now

calculate the closed string field configuration produced by the ZZ-type Dp-brane, using the

method of [32]. The closed string field |Ψ〉 is a state with ghost number 2 in the Hilbert

space of the first quantized closed string theory, which satisfies the constraints

(b0 − b̃0)|Ψ〉 = 0 , (L0 − L̃0)|Ψ〉 = 0 . (3.1)

The linearized equation of motion of |Ψ〉 is

2 (QB + Q̃B)|Ψ〉 = |Bp〉 . (3.2)

Here QB + Q̃B is the BRST charge. The string field is easier to be found if we impose the

Siegel gauge condition

(b0 + b̃0)|Ψ〉 = 0 . (3.3)

Since the exactness of the Virasoro generator in the BRST cohomology

{QB + Q̃B , b0 + b̃0} = L0 + L̃0 , (3.4)

we get the equation of motion in the Siegel gauge

2 (L0 + L̃0)|Ψ〉 = (b0 + b̃0)|Bp〉 . (3.5)
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Now using the expressions for the boundary state |Bp〉, we see that the source term (b0 +

b̃0)|B〉 for the closed string field, due to (b0 + b̃0)(c0 + c̃0)| ↓〉 = 2 | ↓〉, is

∫

dk0

2π

dk1

2π

dD−p−2k⊥
(2π)D−p−2

UX0(k0)|k0〉〉 ⊗ UX1(k1)|k1〉〉

⊗ exp

[

−
∞
∑

n=1

1

n
Sij αi

−nα̃j
−n

]

|ki〉 ⊗ exp

[

∞
∑

n=1

(c−nb̃−n − b−nc̃−n)

]

| ↓〉

≡
∫

dk0

2π

dk1

2π

dD−p−2k⊥
(2π)D−p−2

UX0(k0)UX1(k1)

∞
∑

N=0

ÔN |k0, k1, k⊥, k‖ = 0; ↓〉 . (3.6)

Here we group the various descendant states according to their level, and introduce the

operator ÔN to map the primary state to a level N state. This operator will in general

depend on the momentum k1, due to the nontriviality of the Liouville theory along the X1

direction.

To solve the closed string field |Ψ〉 produced by the brane decay, we make the following

ansatz

|Ψ〉 =

∫

dk0

2π

dk1

2π

dD−p−2k⊥
(2π)D−p−2

UX1(k1)
∞

∑

N=0

ÔN φN (k) |k, ↓〉 , (3.7)

where the symbol k is a abbreviation of (k0, k1, k⊥, k‖ = 0), and φN (k) is the unknown

function to be determined. To calculate the action of L0 and L̃0 on the closed string field

|Ψ〉, we can using the general argument in CFT to get the result, without knowing the

detail form of the descendant operator ÔN introduced above. Consider a Ishibashi state

|h〉〉 associated to the primary state |h〉, which can be written as

|h〉〉 =

∞
∑

N=0

ÔN |h〉 . (3.8)

The index N denotes the level, and the state ÔN |h〉 is a combination of level N descendant

states. It is not difficult to see that

L0ÔN |h〉 =

(

∑

i

hi + N

)

ÔN |h〉 . (3.9)

The action of L̃0 is similar. Then we obtain the result of 2(L0 + L̃0)|Ψ〉 as following

∞
∑

N=0

∫

dk0

2π

dk1

2π

dD−p−2k⊥
(2π)D−p−2

δp(k‖)UX1(k1)
[

k2 + V 2 + 4(N − 1)
]

φN (k) ÔN |k, ↓〉 .(3.10)

Insert the above formula and (3.6) into the Siegel gauge EOM (3.5) we have

[

k2 + V 2 + 4(N − 1)
]

φN (k) = UX0(k0) . (3.11)

Here we have dropped the factor δp(k‖) and restricted to k‖ = 0. So we see that although

the X1 direction is a nontrivial Liouville CFT, the result is simple: The equation we need
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to determine the closed string field is just the same as the usual free CFT rolling tachyon,

except the contribution, the V 2 term, from the linear dilaton. Having the closed string

field in momentum space, we make the Fourier transformation with respect to k0 to get

the φN (x0,k) as

φN (x0,k) =

∫

dk0

2π

UX0(k0)

−k2
0 + ω2

k

eik0x0

=
i C

ωk

λ̃iωk/β Γ(−iωk/β) Γ(1 + iβωk) e−iωkx0
, (3.12)

where C is an unimportant constant, ωk = k2 + V 2 + 4(N − 1), λ̃ = 2πλ/Γ(1 + β2). This

is the negative frequency solution. The positive one can be obtain by the replacement

ω → −ω. This result can be formally argued by use of the residue theorem. The positive

and negative frequency parts correspond to the different choice of the contour. However the

behavior of the integration along the large semicircle is not easy to analyze. In appendix

we give a direct calculation of this Fourier transformation.

4. Closed string emission from the brane decay

In this section we calculate the closed string emission following the method of [9]. We first

calculate the open string partition function, which is just the product of each directions.

The optical theorem tells us that the imaginary part of this partition is the closed string

emission rate.

4.1 Partition function

The total open string partition function can be written as

Z(t) = 〈Bp| q̃ L0+L̃0−
D−2
12 |Bp〉 , q̃ = e−4t . (4.1)

In this boundary state formalism, the annulus is viewed as the propagation of a closed

string, so the closed string Hamiltonian L0 + L̃0 − c
12 appears in the exponential. Note

that we have included the ghost contribution which cancel two of the total directions. This

partition function, of course, factorizes into the part of each direction. The nontrivial ones

are the X0 and X1 directions, the remaining parts, including the ghost, are standard. The

X0 part of the partition function is [9]

ZX0(t) =
π

2

∫ ∞

−∞
dk0

χ(k0+iV0)/2(t)

sinh(πβk0) sinh(πk0/β)
, (4.2)

χα(t) = η(2it/π)−1 q̃−(α−iV0/2)2 . (4.3)

Here χα is the character. After a modular transformation to the open string channel and

integrating over k0, the partition function becomes

ZX0(t) =
√

2 η(iπ/2t)−1

∫ ∞

−∞
dν qν2 ∂fβ

∂ν
(ν) , q = e−π2/t . (4.4)
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where the function fβ(ν) is defined as

fβ(ν) =
1

2

∫ ∞

−∞

dk0

k0

[

sinh(νk0)

sinh(βk0) sinh(k0/β)
− ν

k0

]

. (4.5)

Actually fβ(ν) here is just the the special function log Sβ(β+1/β
2 − ν), which is widely used

in the literature of Liouville theory. The derivative of f has simple poles at

ν =

(

m +
1

2

)

β +

(

n +
1

2

)

/ β , m, n ∈ Z . (4.6)

The integration contour is chosen to go below the real axis for negative ν and above for

positive ν. For the calculation of the closed string emission rate it is needed to know the

imaginary part of ZX0 , which arises when going around the poles of fβ(ν)

ImZX0(t) = 2
√

2 π η(iπ/2t)−1
∞
∑

m,n=0

e−[(n+ 1
2
)β+(m+ 1

2
)/β]2π2/t . (4.7)

Now we turn to the partition function of the X1 direction. The ZZ brane [27] in this

direction contains only the identity operator and its descendant fields. It corresponds to

a degenerate representation of the Virasoro algebra. For general b there is only one null

state at level one, so the character reads simply as

χ
ZZ

(q) = η(iπ/2t)−1
[

q−(b+1/b)2/4 − q−(b−1/b)2/4
]

, q = e−π2/t . (4.8)

The partition function of the X1 direction, in the open string channel, is just the corre-

sponding character

ZX1(t) = η(iπ/2t)−1
[

q−(b+1/b)2/4 − q−(b−1/b)2/4
]

, (4.9)

since there is only one conformal family which corresponds to the identity operator. This

ZX1 is real, so it contributes to the imaginary part of the total partition function just

a multiplicative factor. The remaining spacial part and the ghost part of the partition

function is standard

ZXi, gh(t) =
Vp

2
√

2 πt

∫

dpk‖

(2π)p
q
k2
‖ η(iπ/2t)4−D . (4.10)

Therefore the total partition function, the product of each part, reads as

Z(t) = ZX0(t)ZX1(t)ZXi, gh(t) (4.11)

=
Vp

2πt
η(iπ/2t)2−D

[

q−(b+1/b)2/4 − q−(b−1/b)2/4
]

∫ ∞

−∞
dν

∫

dpk‖

(2π)p
q
ν2+k2

‖
∂fβ

∂ν
(ν) .

The imaginary part of this partition function is

ImZ(t) =
Vp

t
η(iπ/2t)2−D

[

q−(b+1/b)2/4 − q−(b−1/b)2/4
]

×
∫

dpk‖

(2π)p
q
k2
‖

∞
∑

m,n=0

e−[(n+ 1
2
)β+(m+ 1

2
)/β]2π2/t . (4.12)
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4.2 Closed string emission

In this subsection we will calculate the closed string emission rate by use of the optical

theorem. The annulus diagram can be cut open along a circle, the unitarity tells us that

ImZ, the imaginary part of the annulus amplitude, is just the closed string emission rate

N̄ , which is what we want to know. The imaginary part of the annulus amplitude can be

easily obtained from the CFT result in the previous subsection by integrating the moduli,

since the (perturbative) string theory is just the world-sheet CFT coupled to the 2d gravity.

ImZ = Vp

∫ ∞

0

ds

s

1

(4πs) p/2

[

es(b+1/b)2/4 − es(b−1/b)2/4
]

η(is/2π)2−D

×
∞

∑

m,n=0

e−s[(n+ 1
2
)β+(m+ 1

2
)/β]2 . (4.13)

Here we have integrated out the longitudinal momentum k‖, and made a coordinate trans-

formation t = π2/s. The variable s is the world-sheet time of the open string, while t is

that of the closed string.

Now we analyze the potential divergence of the emission rate ImZ. For the limit

s → ∞, which is the open string IR and closed string UV, the integrand becomes

Vp

s

1

(4πs) p/2
e

1
4
(b+1/b)2s e−

1
4
(β+1/β)2s e

D−2
24

s (4.14)

The world-sheet Weyl invariance tells us

26 = D + 6(−V 2
0 + V 2

1 ) , V0 = β − 1

β
, V1 = b +

1

b
. (4.15)

So we have

1

4

(

b +
1

b

)2

− 1

4

(

β +
1

β

)2

+
D − 2

24
= 0 . (4.16)

All of the exponential factors disappear. Therefore the integration of (4.14) at the neighbor-

hood of infinity is convergent for all larger p except p = 0. Since this conclusion directly

follows from the world-sheet Weyl invariance, it does not matter whether the dilaton is

spacelike, timelike or lightlike.

There is another way to understand this facts from the picture of the Euclidean D-

brane. Notice that the expression (4.13) can be viewed as the partition function of open

strings stretched between an array of Euclidean D-branes along imaginary time [8, 33], i.e.

N̄ = ImZ = Vp

〈

B−

∣

∣

∣

∣

b+
0 c+

0

L0 + L̃0

∣

∣

∣

∣

B+

〉

, (4.17)

where the boundary state |B+〉 describes branes located at imaginary time X0 = i(n+ 1
2 )β

for n ≥ 0, while |B−〉 denotes branes at X0 = −i(m+ 1
2)/β for m ≥ 0. The other directions

of these boundary state are the tensor product of the ZZ brane with the free part. A closed

string UV divergence relates, through the modular transformation, with the open string
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IR divergence. From this open string point of view the equation (4.16) just says that the

lightest state of the open strings, stretched along imaginary time direction, is massless.

M2
open =

(

β

2
+

1

2β

)2

− 1

4

(

b +
1

b

)2

− D − 2

24
= 0 . (4.18)

The first term is the energy due to the finite length between two closest D-branes. The

second term comes from the Liouville direction. The last term is just the zero point energy.

To calculate the emitted energy we use the formula, presented in [8],

Ē =
∂

∂a

〈

B

∣

∣

∣

∣

[

b+
0 c+

0

L0 + L̃0

]

ret

∣

∣

∣

∣

B(a)

〉

a=0

. (4.19)

It is not difficult to find that the emitted energy is finite for p > 2, while infinite for p ≤ 2.

This result is the same as that of [8], while not the same as [9]. In [9] although the linear

dilaton is also tuned on, the moduli integration in the closed string UV region is convergent

exponentially. This will raise a question. The original brane tension is proportional to the

inverse of the string coupling, so the energy carried by the closed strings, which is finite, is

insufficient by a power of gs in the weak coupling limit. The model studied here exhibits

a same Hagedorn behavior as [8], due to the presence of the Liouville direction, which

contributes a exponentially increasing factor es(b+1/b)2/4. We focus on the particular case

p = 0, or the p-brane with all extended spacial direction compactified on circles. In this case

the closed string emission rate diverges logarithmically, and the emitted energy diverges

linearly. It is natural to chose the cutoff at 1/gs. Then we see that the emitted energy has

the same order of magnitude as the original brane. The same conclusion as [8] follows: all

of the brane energy converts into outgoing closed strings, and most of the energy is carried

by closed strings of mass ∼ 1/gs. These divergence seems to invalidate the classical open

string results. However we know that there is a new kind of open/closed string duality [10]

in the process of open closed string tachyon condensation, according to which the complete

dynamics of an unstable D-brane is captured by the quantum open string theory without

any need to explicitly consider the coupling of the system to closed strings. In the context

of the two-dimensional string theory, this duality can be checked more explicitly using

the dual matrix model. In the case studied here it is, however, difficult to see it directly.

However we believe that it is still right.

Next we go to the closed string IR region: s → 0. Consider the following integral

∞
∑

m,n=0

∫ δ

0

ds

s

1

(4πs) p/2

[

es(b+1/b)2/4 − es(b−1/b)2/4
]

e−sA2
mn η(is/2π)2−D

∼
∞
∑

m,n=0

∫ δ

0

ds

s

s

(4πs) p/2
e−sA2

mn η(is/2π)2−D , s → 0 , (4.20)

where we have defined Amn ≡ (n + 1
2)β + (m + 1

2 )/β. To analyze this expression it is

convinient to take a modular transformation of the Dedekind η-function to obtain the

following asymptotic behavior as s → 0:

η(is/2π)2−D ∼
( s

2π

)
D−2

2

(

e
(D−2)π2

6s + (D − 2) e
(D−26)π2

6s + · · ·
)

. (4.21)
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The first term corresponds to the closed string tachyon which is an artifact of our bosonic

string model and is absent in the superstring theory, so, as usual, we simply ignore it.

Insert the second term into (4.20) we have

∞
∑

m,n=0

∫ δ

0

ds

(4πs) p/2

( s

2π

)
D−2

2
(D − 2) e

(D−26)π2

6s e−sA2
mn . (4.22)

When D > 2, the above quantity is smaller than the following one with δ → ∞

I =

∞
∑

m,n=0

∫ ∞

0

ds

(4πs) p/2

( s

2π

)
D−2

2
(D − 2) e

(D−26)π2

6s e−sA2
mn , (4.23)

since the integrand is positive. The infinite integral in I, after some trivial rescaling,

can be related to the modified Bessel function Kν(z), which has the following integral

representation

Kν(z) =
1

2

(z

2

)ν
∫ ∞

0
s−ν−1 exp

(

−s − z2

4s

)

ds . (4.24)

Then we have

I = (D − 2)C
∞

∑

m,n=0

A
−(D−p )/2

mn K(D−p )/2(zmn) , (4.25)

zmn =

√

2(26 − D)

3
πAmn , (4.26)

where C is an unimportant factor. To analyze the series I to be convergent or not, we need

to know the behavior of the summand when m,n is large. Notice that when m,n → ∞,

zmn also tends to infinity. Use the asymptotic expansion Kν(z) ∼ Cz−1/2 exp(−z) we know

that the summand behaves as

A
−(D−p−1 )/2

mn exp

[

−π

√

2(26 − D)

3
Amn

]

. (4.27)

So the series I is finite. Therefore we have proved that, for 2 < D < 26, there is no

divergence in the emission rate when going to the closed string IR region. This result is

similar with [9], since the spacial Liouville part of the partition function is not important

in the closed string IR region, while the time direction, described by TBL, dominates here.

For the case of null dilaton, the dimension of the spacetime is 26. The IR behavior in

the closed string channel is completely different from that of the spacelike dilaton studied

above. Set D = 26 in (4.22), we need to estimate the following quantity

24
∞
∑

m,n=0

∫ δ

0

ds

(4πs) p/2

( s

2π

)12
e−sA2

mn . (4.28)

The integral is essentially the incomplete Gamma function

γ(α, x) =

∫ x

0
et tα−1dt , (4.29)
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so (4.28) is equal to

Const. ×
∞
∑

m,n=0

A −(26−p )/4
mn γ

(

26 − p

2
, A1/2

mnδ

)

. (4.30)

We first take the limit δ → 0. By use of the expansion γ(α, x) ∼ 1
α xα as x → 0, the

quantity (4.28) tends to

Const. ×
∞
∑

m,n=0

1 , (4.31)

which is badly divergent. This result is reasonable, since when D = 26 we have no more the

exponential factor e(D−26)π2/6s in (4.22), which suppress the integrand greatly as s → 0.

Physically when the dilaton is null, not only is the field configuration on the brane time-

dependent, the background in the bulk is also variant along with time. To some extent the

IR divergence we just find reflects this double time dependence.

5. Concluding remarks

In presence of the linear dilaton a more natural treatment is to embed it into the Liouville

filed theory, especially when studying the behavior of D-branes. It is impossible to impose

the usual Dirichlet boundary condition in the direction where the linear dilaton tuned on,

since it is incompatible with the world-sheet conformal invariance. While when embedding

into the Liouville theory, we can talk about the extended FZZT brane and the localized

ZZ brane. The latter one is more interesting. The open string dynamics on it gives a

holographic description of the bulk physics in two-dimensional string theory.

In this paper we consider the decay of the ZZ-type Dp-brane in the linear dilaton

background with a Liouville potential switched on. This kind of branes satisfy the ZZ

boundary condition in the Liouville direction and usual Dirichlet or Neumannn in other

spacial directions. We calculate the closed string field produced by the brane decay, and

also analyze the emission rate of closed strings during this decay process. We find that

when 2 < D < 26 (spacelike dilaton) there is a Hagedorn behavior in the closed string UV

region, as same as both in 26d and 2d string theory in this region. In the case of p = 0

(or the p-brane with all extended spacial directions wrapped on circles), the energy of the

original brane completely converts into the outgoing closed strings. Due to the presence of

the Liouville direction our result is different from that of [9], although both have a linear

dilaton background. On the other hand, when going to the closed string IR, the emission

rate is finite. In this region the time direction CFT dominates. For the case of null dilaton,

the UV behavior does not change. In the IR region the result is, however, divergent.

There are some future directions. It is interesting to study the same question from

the viewpoint of the effective dynamics. This may give us more insight into it. We can

also turn on some electric or magnetic fluxes on the brane and see what happens. The

electromagnetic field on the brane induces the conserved charges. The conservation law

provides some constraints to the process, making it more controllable. It is also possible
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to compactify some spacial directions and to study the effects of the winding closed strings

emitted out from the unstable brane.
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A. Fourier transformation of the closed string field

In this appendix we give the direct calculation of the following Fourier transformation

I =

∫ ∞

−∞

dk0

2π

Γ(ik0/β) Γ(1 − iβk0)

−k2
0 + ω2

λ̃−ik0/β eik0x0
. (A.1)

Using the Schwinger proper time

− 1

k2
0 − ω2

= i

∫ ∞

0
dt eit(k2

0−ω2) , (A.2)

and the integral representation of Gamma function, we have

I = i

∫ ∞

−∞

dk0

2π
λ̃−ik0/β eik0x0

∫ ∞

0
dt eit(k2

0−ω2)

∫ ∞

0
ds e−ss−1+ik0/β

∫ ∞

0
ds′ e−s′sik0/β

= i

∫∫

ds ds′ e−s−s′s−1

∫ ∞

0
dt e−iω2t

∫ ∞

−∞

dk0

2π
eitk2

0+ivk0 , (A.3)

where v = x0 − 1
β log λ̃ + 1

β log s − β log s′ . The integration over k0, by completing the

square, is the Fresnel integration, and can be work out. Then

I = i C

∫∫

ds ds′ e−s−s′s−1

∫ ∞

0
t−1/2 exp

(

−iω2t − iv2

4t

)

dt . (A.4)

We do not care about the numerical factor, and just write it as C. Fortunately the inte-

gration over t, by some trivial rescaling of t, is just the integral representation of Hankel

function with order minus one-half
∫ ∞

0
t−1/2 exp

(

−iω2t − iv2

4t

)

dt = iπe−iπ/4

√

v

2ω
H− 1

2
(−ω v) =

C

ω
e−iωv . (A.5)

Now the integration I can be completely worked out as

I =
i C

ω
λ̃iω/β Γ(−iω/β) Γ(1 + iβω) e−iωx0

. (A.6)

Of course we can use another Schwinger proper time representation, different from (A.2),

as follows

− 1

k2
0 − ω2

= −i

∫ ∞

0
dt e−it(k2

0−ω2) , (A.7)

The corresponding result is similar, with the replacement ω → −ω,

I ′ =
i C

ω
λ̃−iω/β Γ( iω/β) Γ(1 − iβω) eiωx0

. (A.8)

These two result, I and I ′, correspond to the different choices of the boundary conditions.

One is the negative frequency solution, the other is the positive one.
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